根据顶点坐标,可设抛物线方程为
y = a(x -3)^2 - 2
其中 ^2 表示平方
与x轴两交点间的距离为4
因为 x = 3 是对称轴,所以交点横坐标分别为
x1 = 3 - 4/2 = 1
x2 = 3 + 4/2 = 5
以 x = 1 代如 y = a(x-3)^2 -2
0 = a ( 1-3)^2 - 2
0 = 4a - 2
a = 1/2
所以
y = (1/2) (x -3)^2 - 2
根据顶点坐标,可设抛物线方程为
y = a(x -3)^2 - 2
其中 ^2 表示平方
与x轴两交点间的距离为4
因为 x = 3 是对称轴,所以交点横坐标分别为
x1 = 3 - 4/2 = 1
x2 = 3 + 4/2 = 5
以 x = 1 代如 y = a(x-3)^2 -2
0 = a ( 1-3)^2 - 2
0 = 4a - 2
a = 1/2
所以
y = (1/2) (x -3)^2 - 2