(Ⅰ)函数f(x)的定义域是(-∞,0)∪(0,+∞).
f′(x)=[2/x]-[2a/e]=
2(e−ax)
ex.
当a=0时,由f′(x)=[2/x]≥0,解得x>0;
当a>0时,由f′(x)=
2(e−ax)
ex>0,解得0<x<[e/a];
当a<0时,由f′(x)=
2(e−ax)
ex>0,解得x>0,或x<[e/a].
所以当a=0时,函数f(x)的递增区间是(0,+∞);
当a>0时,函数f(x)的递增区间是(0,[e/a]);
当a<0时,函数f(x)的递增区间是(-∞,[e/a])∪(0,+∞).
(Ⅱ)因为f′(x)=[2/x]-[2/e]=
2(e−x)
ex,
所以以p1(x1,f(x1))为切点的切线的斜率为
2(e−x1)
ex1;
以p2(x2,f(x2))为切点的切线的斜率为
2(e−x2)
ex2.
又因为切线过点p(0,t),
所以t−lnx12+
2x1
e=
2(e−x1)
ex1(0−x1);t−lnx22+
2x2
e=
2(e−x2)
ex2(0−x2).
解得,x12=et+2,x22=et+2.则x12=x22.
由已知x1≠x2
所以,x1+x2=0.