1. tan(α+π/4)=(tanα+tanπ4)/(1-tanα*tanπ/4).
=(2+1)/(1-2*1+.
=-3.
2. 原式=[6inα/cosα)+cosα/cosα)]/(3sinα/cosα-2cosα/cosα)
=(6*2+1)/(3*2-2*1)
=7/4.
1. tan(α+π/4)=(tanα+tanπ4)/(1-tanα*tanπ/4).
=(2+1)/(1-2*1+.
=-3.
2. 原式=[6inα/cosα)+cosα/cosα)]/(3sinα/cosα-2cosα/cosα)
=(6*2+1)/(3*2-2*1)
=7/4.