(2b-c)cosA-acosC=0
由正弦定理b/sinB=a/sinA=c/sinC=2R
b=2RsinB
a=2RsinA
c=2RsinC
(2b-c)cosA-acosC=0
2R(2sinB-sinC)cosA-2RsinAcosC=0
(2sinB-sinC)cosA-sinAcosC=0
2sinBcosA-sinCcosA-sinAcosC=0
2sinBcosA-(sinCcosA+sinAcosC)=0
2sinBcosA-sin(A+C)=0,
2sinBcosA-sin(180-B)=0,
所以:2sinBcosA-sinB=0,
因为:A、B∈(0,π),sinB≠0
所以:cosA=1/2,
所以:A=60度