f(x+pi)=∫|(Sinx+pi)|dx=∫|Sinx|dx (上限是x+3pi/2,下限是x+pi)
在定积分∫|Sinx|dx (上限是x+3pi/2,下限是x+pi)
令t=x-pi x=t+pi
带入积分可得∫|Sin(t+pi)|d(t+pi) 积分限是(t+pi/2,t)
化简可得 该积分=∫|Sint|dt 积分限是(t+pi/2,t)
即f(x+pi)=f(x)
f(x+pi)=∫|(Sinx+pi)|dx=∫|Sinx|dx (上限是x+3pi/2,下限是x+pi)
在定积分∫|Sinx|dx (上限是x+3pi/2,下限是x+pi)
令t=x-pi x=t+pi
带入积分可得∫|Sin(t+pi)|d(t+pi) 积分限是(t+pi/2,t)
化简可得 该积分=∫|Sint|dt 积分限是(t+pi/2,t)
即f(x+pi)=f(x)