设该质数为n,则
n^2-1=(n-1)(n+1)
n是质数,那么首先n是奇数,则n-1与n+1是相邻的两偶数,所以他们必定一个是4的倍数,一个是2的倍数,首先他们能被8整除;
由n不是3的倍数知,n-1,n+1当中必有一个是3的倍数
因为任意3个连续的整数n-1,n,n+1当中必有一个是3的倍数,
所以n^2-1=(n-1)(n+1)
既能被8整除,又能被3整除,所以能被24整除
设该质数为n,则
n^2-1=(n-1)(n+1)
n是质数,那么首先n是奇数,则n-1与n+1是相邻的两偶数,所以他们必定一个是4的倍数,一个是2的倍数,首先他们能被8整除;
由n不是3的倍数知,n-1,n+1当中必有一个是3的倍数
因为任意3个连续的整数n-1,n,n+1当中必有一个是3的倍数,
所以n^2-1=(n-1)(n+1)
既能被8整除,又能被3整除,所以能被24整除