判断奇偶函数时要从定义出发,
在对称区间内对于任意的x,有f(x)=f(-x),即为偶函数,
若是f(x)=-f(-x),即为奇函数
1.题目没看清楚,不知道根号里面是什么,-x是在分母还是单独的!
2.定义域是R,f(-x)=|-x+2|-|-x-2|=|x-2|-|x+2|=-f(x),所以函数是奇函数!
3.f(-x)=[√(1+x²)-x-1]÷[√(1+x²)-x+1]分子分母有理化同乘以[√(1+x²)+x+1][√(1+x²)+x-1]
可得f(-x)=-[√(1+x²)+x-1]÷[√(1+x²)+x+1]=-f(x),所以函数是奇函数!
4.定义域x>0,不是对称区间,所以没有奇偶性一说!