已知递增数列{an}的前n项和为Sn,且满足a1=1,4Sn-4n+1=an2.设bn=1

1个回答

  • 1.

    n≥2时,

    4Sn-4n+1=an² (1)

    4S(n-1)-4(n-1)+1=a(n-1)² (2)

    (1)-(2)

    4[Sn-S(n-1)]+4=an²-a(n-1)²

    4an-4=an²-a(n-1)²

    an²-4an+4=a(n-1)²

    (an -2)²=a(n-1)²

    |an-2|=|a(n-1)|

    数列为递增数列,又a1=1>0,an≥1

    |an-2|=a(n-1)

    an-2=a(n-1)或an-2=-a(n-1)

    an=a(n-1)+2或an=2-a(n-1)

    an=2-a(n-1)时,a2=2-a1=2-1=1=a1,与已知数列是递增数列矛盾,舍去

    因此只有an-2=a(n-1)

    an-a(n-1)=2,为定值

    数列{an}是以1为首项,2为公差的等差数列

    2.

    an=1+2(n-1)=2n-1

    [am²+a(m+1)²-a(m+2)²]/[ama(m+1)]

    =[(2m-1)²+(2m+1)²-(2m+3)²]/[(2m-1)(2m+1)]

    =(4m²-12m-7)/[(2m-1)(2m+1)]

    =(2m+1)(2m-7)/[(2m-1)(2m+1)]

    =(2m-7)/(2m-1)

    =(2m-1-6)/(2m-1)

    =1- 6/(2m-1)

    要[am²+a(m+1)²-a(m+2)²]/[ama(m+1)]为整数,6/(2n-1)为整数,6能被2n-1整除

    6=1×6=2×3

    令2m-1=1,解得m=1;

    令2m-1=6,解得m=7/2,不是整数,舍去

    令2m-1=2,解得m=3/2,不是整数,舍去

    令2m-1=3,解得m=2

    综上,得m=1或m=2

    3.

    bn=1/[ana(n+1)]=1/[(2n-1)(2n+1)]=(1/2)[1/(2n-1)-1/(2n+1)]

    Tn=b1+b2+...+bn

    =(1/2)[1/1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]

    =(1/2)[1- 1/(2n+1)]

    =n/(2n+1)

    λTn