解由-3≤log1/2x≤-1/2,
得-3≤-log2x≤-1/2,
即1/2≤log2x≤3
令t=log2(x),则t属于[1/2,3]
故f(x)=log2x/4·log2x/2=(log2(x)+log2(1/4))(log2(x)+log2(1/2))
=(log2(x)+(-2))(log2(x)+(-1))
故原函数变为y=(t-2)(t-1)=t^2-3t+2 (t属于[1/2,3])
故y=t^2+3t+3
=(t-3/2)^2-1/4
故当t=3/2时,y有最小值-1/4
当t=3时,y有最大值21
故函数的值域为[-1/4,21].