1、1*n+2(n-1)+3(n-2)+……+(n-2)*3+(n-1)*2+n*1的和,如何求得1/6n(n+1)(n
1个回答
1.求Sn-Sn-1 = an 就可以求前N项和
2.我算得-7
相关问题
1*N+2*(N-1)+3*(N-2)+...+N*1=1/6N(N+1)(N+2)
如何推导1/[(2n-1)(2n+1)]=1/2 *[1/(2n-1)-1/(2n+1)] 1/[(3n-1)(3n+1
为什么1*1+2*2+3*3+……+n*n=1/6n(n+1)(2n+1)
如何推出1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6
1*n+2*(n-1)+3*(n-2)+…+n*1=1/6n(n+1)(n+2)数学归纳法证明
用数学归纳法证明:1*n+2(n-1)+3(n-2)+…+(n-1)*2+n*1=(1/6)n(n+1)(n+2)
1\n(n+1)+1\(n+1)(n+2)+1\(n+2)(n+3)+1\(n+3)(n+4)
求和:1*n+2(n-1)+3(n-2)+……+(n-2)*3+(n-1)*2+n*1 答案是n*(n+1)*(n+2)
求证:[1/n+1]+[1/n+2]+…+[1/3n]>[5/6](n≥2,n∈N*).
如何证明1x2+2x3+…+n(n+1)=n(n+1)(n+2)/3