解题思路:由EF垂直平分AD,可得FA=FD,则∠FDA=∠FAD,由角之间的和的关系可得∠FDA=∠B+∠BAD,由三角形的外角性质可得∠FAD=∠CAF+∠DAC,因为AD是∠BAC的平分线,所以∠BAD=∠DAC,即可得到∠CAF=∠B=45°.
∵EF是AD的垂直平分线,
∴FA=FD,
∴∠FDA=∠FAD,
∵∠FDA=∠B+∠BAD,
∠FAD=∠CAF+∠DAC,
∵AD是∠BAC的平分线,
∴∠BAD=∠DAC,
∴∠CAF=∠B=45°.
故答案为:45°.
点评:
本题考点: 角平分线的性质;线段垂直平分线的性质.
考点点评: 此题主要考查角平分线的定义和线段垂直平分线的性质,寻找角之间的关系是难点.