证明2^155-1能被961整除.

1个回答

  • 首先证明:当n>=1,2^5n-1 可以被31整除,利用数学归纳法:

    令K(n) = 2^5n - 1

    当n=1:K(1) = 2^5 - 1 = 31

    假设:2^5n - 1可以被31整除

    那么:K(n+1)

    = 2^5(n+1) - 1

    = 2^5n * 2^5 - 1

    = 32 * 2^5n - 1

    = (2^5n - 1) + 31 * 2^5n

    = K(n) + 31 * 2^5n

    显然,K(n)和31 * 2^5n都可以被31整除,即K(n+1)可以被31整除

    由此,当n>=1,K(n)可以被31整除

    显然:2^155 - 1 = 2^(31 * 5) - 1 = K(31)

    由上面的证明可知,K(31),也就是2^155 - 1可以被31整除

    由于:K(n+1) = k(n) + 31 * 2^5n

    令a(n) = k(n) / 31

    那么:a(n+1) = a(n) + 2^5n

    a(1) = K(1) / 31 = 31 / 31 = 1

    a(2) = a(1) + 2^5 = 1 + 2^5

    a(3) = a(2) + 2^10 = 1 + 2^5 + 2^10

    a(n) = a(n - 1) + 2^5(n-1) = 1 + 2^5 + 2^10 + ...+ 2^5(n - 1)

    a(31) = 1 + 2^5 + 2^10 + ...+ 2^(5*30)

    = 1 + [2^5 - 1] + [2^10 - 1] + ...+ [2^(5 * 30) - 1] + 30

    = [2^5 - 1] + [2^10 - 1] + ...+ [2^(5 * 30) - 1] + 31

    = K(1) + K(2)+ ...+ K(30) + 31

    K(n)可以被31整除,所以

    a(31)可以被31整除

    由于a(31) = K(31) / 31,所以K(31)可以被31*31 = 961整除

    即:2^155-1能被961整除