三角函数的万能公式的推导过程

1个回答

  • 设tan(A/2)=t

    sinA=2t/(1+t^2)

    tanA=2t/(1-t^2)

    cosA=(1-t^2)/(1+t^2)

    推导第一个:(其它类似)

    sinA=2sin(A/2)cos(A/2)

    =[2sin(A/2)cos(A/2)]/[sin^2(A/2)+cos^2(A/2)]

    分子分母同时除以cos^2(A/2)

    =[2sin(A/2)cos(A/2)/cos^2(A/2)]/[(sin^2(A/2)+cos^2(A/2))/cos^2(A/2)]

    化简:

    =[2sin(A/2)/cos(A/2)]/[sin^2(A/2)/cos^2(A/2)+1]

    即:

    =(2tan(A/2))/(tan^(A/2)+1)

    sinα=2sin(α/2)cos(α/2)

    =[2sin(α/2)cos(α/2)]/[sin(α/2)^2+cos(α/2)^2]

    =[2tan(α/2)]/[1+(tanα/2)^2]

    cosα=[cos(α/2)^2-sin(α/2)^2]

    =[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]

    =[1-tan(α/2)^2]/[1+(tanα/2)^2]

    tanα=tan[2*(α/2)]

    =2tan(α/2)/[1-tan(α/2)^2]

    =[2tan(a/2)]/[1-(tanα/2)^2]