f(sinx+1/sinx)=csc^2x-cos^2x
=1/sin^2x-cos^2x
=1/sin^2x-(1-sin^2x)
=1/sin^2x+sin^2x-1
=1/sin^2x+2+sin^2x-1-2
=(sinx+1/sinx)^2-3
f(x)=x^2-3
f(sinx+1/sinx)=csc^2x-cos^2x
=1/sin^2x-cos^2x
=1/sin^2x-(1-sin^2x)
=1/sin^2x+sin^2x-1
=1/sin^2x+2+sin^2x-1-2
=(sinx+1/sinx)^2-3
f(x)=x^2-3