a2+ab-b2=0,且a,b均为正数,则(a2-b2)/(b-a)(b-2a)+(2a2-ab)/(4a2-4ab+b

1个回答

  • a²+ab-b²=0

    a²+ab+ b²/4- b²/4-b²=0

    (a+ b/2)²- 5b²/4=0

    (a+ b/2-√5b/2) (a+ b/2+√5b/2)=0

    a=(√5-1)b/2或a=(-√5-1)b/2

    a/b=(√5-1)/2或a/b=(-√5-1)/2(舍去,a,b均为正数)

    (a²-b²)/(b-a)(b-2a)+(2a²-ab)/(4a²-4ab+b²)*(2a+b)/(2a-b)

    =(a+b)(a-b)/(b-a)(b-2a)+[a(2a-b)/(2a-b)²]*(2a+b)/(2a-b)

    =(a+b)(a-b)/(a-b)(2a-b)+[a(2a-b)/(2a-b)²]*(2a+b)/(2a-b)

    =(a+b)/(2a-b)+a(2a+b)/(2a-b)²

    =[(a+b)(2a-b)+a(2a+b)]/(2a-b)²

    =(2a²+ab-b²+2a²+ab)/(2a-b)²

    =(4a²+2ab-b²)/(2a-b)²

    =(4a²-4ab+b²+6ab-2b²)/(2a-b)²

    =[(2a²+b²)+2(a²+ab-b²)]/(2a-b)²

    =(2a²+b²)/(2a-b)²

    =(2a²+b²)/(4a²-4ab+b²)(分子分母同除以b²)

    =[2(a/b)²+1]/[4(a/b)²-4(a/b)+1]

    将a/b=(√5-1)/2代入,得

    原式=[2(a/b)²+1]/[4(a/b)²-4(a/b)+1]

    ={2[(√5-1)/2])²+1]}/{4[(√5-1)/2])²-4*(√5-1)/2+1}

    ={2*(6-2√5)/4+1}/{4*(6-2√5)/4-2√5+2+1}

    =[3-√5+1]/[6-2√5-2√5+3]

    =[4-√5]/[9-4√5]

    =(4-√5)(9+4√5)/(9-4√5)(9+4√5)

    =36+16√5-9√5-20

    =16+7√5