过C作AB的垂线于E,BE=(AB-CD)/2
由余弦定理:
AC^2=AD^2+CD^2-2AD*CD*cos∠ADC ①
AC^2=BC^2+AB^2-2BC*AB*cos∠ABC ②
而BC=AD,∠ADC=180°-∠ABC,cos∠ADC=-cos∠ABC
(①+②)/2得AC^2=AD^2+(AB^2+CD^2)/2-BC(AB-CD)cos∠ABC
=AD^2+(AB^2+CD^2)/2-(AB-CD)*BE
=AD^2+(AB^2+CD^2)/2-(AB-CD)^2 /2
=AD^2+AB*CD