已知:M=980克=0.98千克,m=20克=0.02千克,V0=300 m/s,L=10厘米=0.1米,
ΔX=6厘米=0.06米,V01=400 m/s
求:(1)V共,ΔE;(2)若子弹速度是400m/s,能否射穿木块?
(1)由题意知,子弹和木块组成的系统在水平方向不受外力,动量守恒,得
m*V0=(M+m)*V共
得它们的共同速度是 V共=m*V0 /(M+m)=0.02 * 300 /(0.98+0.02)=6 m/s
此过程中系统所增加的内能等于系统减少的机械能(本题等于减少的动能).
即增加的内能是
ΔE=(m * V0^2 / 2)-[(M+m)*V共^2 / 2 ]
=m M * V0^2 / [ 2*(M+m)]
=0.02*0.98* 300^2 / [2*(0.98+0.02)]
=882 焦耳
若设阻力大小是 f ,则有 ΔE=f * ΔX
得 f=ΔE / ΔX=882 / 0.06=14700 牛
(2)若子弹的水平速度是 V01=400 m/s
那么初始时子弹的动能是 Ek0=m* V01^2 / 2=0.02 * 400^2 / 2=1600 焦耳
而子弹要穿透该木块所产生的热量是
Q=f * L=14700* 0.1=1470 焦耳
显然,由于 Ek0<f * L ,所以子弹仍不能穿透该木块.
注:由于木块可以在光滑水平面滑动的,即使子弹初动能 Ek0=f L ,也不能穿透木块.
子弹若想穿透木块,必须满足:V01≧V0` (V0`是刚好能穿透木块所对应的子弹初速度)
m*V0`=(M+m)*V共`
f * L=(m* V0`^2 / 2)-[(M+m)*V共`^2 / 2 ]