(1)△BAE≌△CAD,
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
又∵∠DEA=45°
∴∠CDE+∠DEC=90°
∴∠BCD=90°
即DC⊥BE.
(1)△BAE≌△CAD,
∵∠BAC=∠DAE=90°
∴∠BAE=∠DAC
又∵AB=AC
∠B=∠ADC=45°
∴△BAE≌△CAD
(2)证明:
∵△BAE≌△CAD
∴∠BEA=∠ADC
又∵∠ADE=45°
∴∠BEA+∠CDE=45°
又∵∠DEA=45°
∴∠CDE+∠DEC=90°
∴∠BCD=90°
即DC⊥BE.