解题思路:(1)甲获得小组第一且丙获得小组第二,即甲胜乙,甲胜丙,丙胜乙,由已知中在每一场比赛中,甲胜乙的概率为[1/3],甲胜丙的概率为[1/4],乙胜丙的概率为[1/3],我们利用相互独立事件的概率乘法公式,即可得到答案.
(2)三人得分相同,即每人胜一场输两场,有以下两种情形:①甲胜乙,乙胜丙,丙胜甲;②甲胜丙,丙胜乙,乙胜甲,代入相互独立事件的概率乘法公式,结合互斥事件概率加法公式,即可得到答案.
(3)甲不是小组第一与甲是小组第一为对立事件,根据(1)中的结论,我们利用对立事件概率减法公式,即可得到答案.
(1)甲获小组第一且丙获小组第二为事件A
则事件A成立时,甲胜乙,甲胜丙,丙胜乙
由在每一场比赛中,甲胜乙的概率为[1/3],甲胜丙的概率为[1/4],乙胜丙的概率为[1/3]
则P(A)=[1/3×
1
4×
2
3]=[1/18]
(2)设三场比赛结束后,三人得分相同为事件B
则每人胜一场输两场,有以下两种情形:
甲胜乙,乙胜丙,丙胜甲概率P=[1/3×
1
4×
3
4]=[1/12];
甲胜丙,丙胜乙,乙胜甲概率P=[1/4×
2
3×
2
3]=[1/9]
故三人得分相同的概率为P(B)=[1/12]+[1/9]=[7/36]
(3)设甲不是小组第一的事件C,甲是小组第一的事件D
则C,D为对立事件,
∵D成立事,甲胜乙,甲胜丙
故P(D)=[1/3×
1
4]=[1/12];
P(C)=1-P(D)=1-[1/12]=[11/12]
点评:
本题考点: 相互独立事件的概率乘法公式.
考点点评: 本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.