在半径为R的球内作一个内接圆柱体,要使圆柱体体积最大,问其高、底半径是多少?

1个回答

  • 设内接圆锥的高为h,底面半径为r,体积为V.

    则V=π/3×r2×h=π/3×r2×(R+√(R2-r2)).

    令r=Rcosθ(0<θ<π/2),

    于是V=π/3×R3×cos2θ(1+sinθ) =π/6×R3(2(1-sinθ)(1+sinθ)(1+sinθ) <=π/6×R3((2(1-sinθ)+(1+sinθ)+(1+sinθ))/3)3 =32/81×πR3当且仅当2(1-sinθ)=1+sinθ,

    即sinθ=1/3时等号成立,这时h=R(1+sinθ)=4/3×R

    那么圆锥半径r^2=R^2-(4R/3-R)^2=8R^2/9

    体积=派*r^2*h/3=32派R^3/81