应该是4(sinC)^2=1
设AB边上过C点的高为ha
sin²A+sin²B-2sinB*sinA*cosC
=(ha/b)²+(ha/a)²-2(ha²/ab)cosC
=ha²/a²b²(a²+b²-2ab*cosC)
=(ha²/a²b²)(c²)
=(c*ha/ab)²
c*ha=2S三角形ABC
=(2S/ab)²
S/a为三角形在BC边上的高,再除以b为sin30°
=4sin²30°
=1
应该是4(sinC)^2=1
设AB边上过C点的高为ha
sin²A+sin²B-2sinB*sinA*cosC
=(ha/b)²+(ha/a)²-2(ha²/ab)cosC
=ha²/a²b²(a²+b²-2ab*cosC)
=(ha²/a²b²)(c²)
=(c*ha/ab)²
c*ha=2S三角形ABC
=(2S/ab)²
S/a为三角形在BC边上的高,再除以b为sin30°
=4sin²30°
=1