S=∫(0,1)[x(1/2)]dx-∫(0,1)[x^2]dx
=[2/3(x^(3/2))-1/3(x^3)](0,1)
=2/3-1/3
=1/3
V=π∫(0,1)[x]dx-π∫(0,1)[x^4]dx
=π[1/2(x^2)-1/5(x^5)](0,1)
=3π/10
搞出来了,不过我是百度一下搞出来的..
百度上有,http://zhidao.baidu.com/question/114478654.html?an=0&si=3 O客 | 九级 他的答案,他回答的题目是:求由曲线y=x的平方2,x=y的平方2所围成的平面图形的面积S,以及该平面图形绕x轴旋转转一周所得旋转体体积V