因为要使函数值域为R,则真数必须能取一切正实数.
而真数是一个二次函数.令t=ax^2+2x+1.
因此,要让t>0即t取一切正数,即二次函数的值域一定为R+,所以二次函数开口一定向上.
如果△=M(M为一个正数),这样t的值取不完所以正数,故函数的值域是[lgM,+∞),不是R了.
如果△>=0,则t>=M(M为0或负数),又因为t作为真数,所以当t0,此时函数的值域为R了.
请认真看一下,看是否理解呀!
因为要使函数值域为R,则真数必须能取一切正实数.
而真数是一个二次函数.令t=ax^2+2x+1.
因此,要让t>0即t取一切正数,即二次函数的值域一定为R+,所以二次函数开口一定向上.
如果△=M(M为一个正数),这样t的值取不完所以正数,故函数的值域是[lgM,+∞),不是R了.
如果△>=0,则t>=M(M为0或负数),又因为t作为真数,所以当t0,此时函数的值域为R了.
请认真看一下,看是否理解呀!