.已知正方形ABCD中,AB= 5,E是直线BC上的一点,联结AE,过点E作EF⊥AE,交直线CD于点F.

1个回答

  • (1)

    EF⊥AE,所以∠BAE=∠CEF,△BAE∽△CEF

    对应边成比例:CF/BE=CE/AB=(BC-BE)/AB

    即:y/x=(5-x)/5

    y = (-1/5)x²+x

    所以,y关于x的函数解析式为:

    y = (-1/5)x²+x

    其定义域为:x∈(0,5)

    y = (-1/5)x²+x

    = (-1/5)(x-5/2)²+5/4

    当x=5/2时,y最大,即CF最长,此时y=5/4

    (2)

    CF=6/5时,

    (-1/5)x²+x = 6/5

    解得,x=2或x=3

    tan EAF

    = EF/AE

    = √[(BC-x)²+y²] / √(AB²+x²)

    = √[(5-x)²+y²] / √(5²+x²)

    当 x=2时

    tan EAF

    = √[(5-2)²+(6/5)²] / √(5²+2²) = (√111/435)

    当 x=3时

    tan EAF

    = √[(5-3)²+(6/5)²] / √(5²+3²) = (√86/465)