解题思路:根据题意得到三角形ABC为等腰直角三角形,且CD为斜边上的中线,利用三线合一得到CD垂直于AB,且CD为角平分线,得到∠CAE=∠BCG=45°,再利用同角的余角相等得到一对角相等,AC=BC,利用ASA得到三角形AEC与三角形CGB全等,利用全等三角形的对应边相等即可得证.
证明:∵点D是AB中点,AC=BC,∠ACB=90°,
∴CD⊥AB,∠ACD=∠BCD=45°,
∴∠CAD=∠CBD=45°,
∴∠CAE=∠BCG,
又∵BF⊥CE,
∴∠CBG+∠BCF=90°,
又∵∠ACE+∠BCF=90°,
∴∠ACE=∠CBG,
在△AEC和△CGB中,
∠CAE=∠BCG
AC=BC
∠ACE=∠CBG,
∴△AEC≌△CGB(ASA),
∴AE=CG.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.