limx-o sin(2k-1)x/kx
=1/klimx-o sin(2k-1)x/x
=1/klimx-o sin(2k-1)x/(2k-1)x/(2k-1)
=(2k-1)/klimx-o sin(2k-1)x/(2k-1)x
=(2k-1)/k=k
2k-1=k^2
k^2-2k+1=0
(k-1)^2=0
k=1
limx-o sin(2k-1)x/kx
=1/klimx-o sin(2k-1)x/x
=1/klimx-o sin(2k-1)x/(2k-1)x/(2k-1)
=(2k-1)/klimx-o sin(2k-1)x/(2k-1)x
=(2k-1)/k=k
2k-1=k^2
k^2-2k+1=0
(k-1)^2=0
k=1