已知数列,满足0<a1<2,a(n+1)=2-|an|,\x0c是否存在a1,使数列为等差?

3个回答

  • 满足0<a1<2,a(n+1)=2-|an|,且数列为等差数列的充分必要条件是a1 = 1.

    证明:(充分性)当a1 = 1时,显然数列是全为1的数列,则该数列是等差为0的等差数列;

    (必要性)有题目可知a(i+1)= 2 - |a(i)| = 2 - a(i) = 2 - (2 - a(i-1)) = a(i-1),

    若数列为等差数列,则有a(i+1)- a(i)= a(i)- a(i-1),将a(i-1)= a(i+1)带入可得

    a(i+1)- a(i)= a(i)- a(i+1)即 a(i+1)= a(i),

    将a(i+1)= a(i)带入 a(i+1)= 2 - a(i)可得 a(i)= 1,即a1 = 1.(证毕)