log2a1+log2a2+log2a3+...+log2a10=25
log2(a1*a2*……*a10)=25
log2(a1*a1q*a1q²*……*a1*q^9)=25
log2(a1^10*q^(1+2+……+9))=25
a1^10*q^45=2^25
q=2
所以a1^10=2^25÷2^45=2^(-20)
真数大于0
a1>0
所以a1=2^(-2)=1/4
所以a1+a2+……+a10
=1/4*(1-2^10)/(1-2)
=1023/4
log2a1+log2a2+log2a3+...+log2a10=25
log2(a1*a2*……*a10)=25
log2(a1*a1q*a1q²*……*a1*q^9)=25
log2(a1^10*q^(1+2+……+9))=25
a1^10*q^45=2^25
q=2
所以a1^10=2^25÷2^45=2^(-20)
真数大于0
a1>0
所以a1=2^(-2)=1/4
所以a1+a2+……+a10
=1/4*(1-2^10)/(1-2)
=1023/4