解题思路:(1)连接DE,DF,EF.根据三角形的中位线定理得到等边三角形DEF,再根据SAS证明△DMF≌△DNE,从而得到结论;
(2)类似(1)中的证明思路,显然结论仍然成立;
(3)连接DF,NF,EF.根据SAS证明△DBM≌△DFN,从而得到∠DFN=∠DBM=120°,再根据平角定义即可证明.
(1)证明:连接DE,DF,EF.(1分)
∵△ABC是等边三角形,
∴AB=AC=BC.
又∵DE,DF,EF为三角形的中位线.
∴DE=DF=EF,∠FDE=60°.
又∠MDF+∠FDN=60°,∠NDE+∠FDN=60°,
∴∠MDF=∠NDE.(3分)
又∵DM=DN,
∴△DMF≌△DNE.(4分)
∴MF=NE.(5分)
(2)画出图形(如答图).(7分)
MF与NE相等的结论仍然成立.(8分)
(3)点F在直线NE上.(9分)
连接DF,NF,EF.
由(1),知DF=[1/2]AC=[1/2]AB=DB.
又∠BDM+∠BDN=60°,∠NDF+∠BDN=60°,
∴∠BDM=∠NDF,
又∵DM=DN,
∴△DBM≌△DFN.(10分)
∴∠DFN=∠DBM=120°.
又∵∠DFE=60°.
∴∠NFE=∠DFN+∠DFE=180°.(11分)
可得点F在NE上.(12分)
点评:
本题考点: 等边三角形的性质;全等三角形的判定与性质.
考点点评: 此题综合运用了等边三角形的性质和判定、全等三角形的判定和性质.全等是证明线段相等的常用方法,证明三点共线的方法是利用平角定义.