AB/sin∠ACB=AC/sin∠B,AD/sin∠ACD=AC/sin∠D
∵∠B﹢∠D=180°∴sin∠B=sin∠D
又∵AB=AD∴∠ACB=∠ACD=60°
S=1/2·BC·AC·sin∠BCA+1/2·DC·AC·sin∠DCA
∵∠ACB=∠ACD=60°,AC=2倍根号3
∴S=3/2﹙BC+DC﹚
cos∠ACD=﹙AC²+CD²-AD²﹚/2·AC·CD=1/2
cos∠ACB=﹙AC²+BC²-AB²﹚/2·AC·BC=1/2
12+CD²-AD²=2倍根号3×CD
12+BC²-AD²=2倍根号3×BC 两式作差
CD²-BC²=2倍根号3×﹙CD-BC﹚=﹙CD+BC﹚×﹙CD-BC﹚
∴CD+BC=2倍根号3
∴S=3/2·2倍根号3=3倍根号3