如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,AC=二倍根号三,∠ACD=60°,求四边形ABCD的面积.

1个回答

  • AB/sin∠ACB=AC/sin∠B,AD/sin∠ACD=AC/sin∠D

    ∵∠B﹢∠D=180°∴sin∠B=sin∠D

    又∵AB=AD∴∠ACB=∠ACD=60°

    S=1/2·BC·AC·sin∠BCA+1/2·DC·AC·sin∠DCA

    ∵∠ACB=∠ACD=60°,AC=2倍根号3

    ∴S=3/2﹙BC+DC﹚

    cos∠ACD=﹙AC²+CD²-AD²﹚/2·AC·CD=1/2

    cos∠ACB=﹙AC²+BC²-AB²﹚/2·AC·BC=1/2

    12+CD²-AD²=2倍根号3×CD

    12+BC²-AD²=2倍根号3×BC 两式作差

    CD²-BC²=2倍根号3×﹙CD-BC﹚=﹙CD+BC﹚×﹙CD-BC﹚

    ∴CD+BC=2倍根号3

    ∴S=3/2·2倍根号3=3倍根号3