(1)
a+b+c+d=0
a+b = -c-d
(a+b)² = (c+d)²
(a+b)³+(c+d)³
= (a+b)(a+b)²+(c+d)³
= (a+b)(c+d)²+(c+d)³
= (a+b+c+d)(c+d)²
= 0*(c+d)²
= 0
(2)
(a+b)³+(c+d)³=0
a³+3a²b+3ab²+b³ + c³+3c²d+3cd²+d³=0
a³+b³+c³+d³+3a²b+3ab²+3c²d+3cd²=0
3+3a²b+3ab²+3c²d+3cd²=0
1+a²b+ab²+c²d+cd²=0
1+ab(a+b)+cd(c+d)=0
1-ab(c+d)-cd(a+b)=0
∴ab(c+d)+cd(a+b)=1
不好意思,刚才忘了答第二问