已知a+b+c+d=0,a^3+b^3+c^3+d^3=3 (1)求证;(a+b)^3+(c+d)^3=0 (2)求证:

2个回答

  • (1)

    a+b+c+d=0

    a+b = -c-d

    (a+b)² = (c+d)²

    (a+b)³+(c+d)³

    = (a+b)(a+b)²+(c+d)³

    = (a+b)(c+d)²+(c+d)³

    = (a+b+c+d)(c+d)²

    = 0*(c+d)²

    = 0

    (2)

    (a+b)³+(c+d)³=0

    a³+3a²b+3ab²+b³ + c³+3c²d+3cd²+d³=0

    a³+b³+c³+d³+3a²b+3ab²+3c²d+3cd²=0

    3+3a²b+3ab²+3c²d+3cd²=0

    1+a²b+ab²+c²d+cd²=0

    1+ab(a+b)+cd(c+d)=0

    1-ab(c+d)-cd(a+b)=0

    ∴ab(c+d)+cd(a+b)=1

    不好意思,刚才忘了答第二问