f(x)=4cosx(sinxcosπ/6+cosxsinπ/6)+1
=2√3sinxcosx+2cos²x-1+2
=√3sin2x+cos2x+2
=2(sin2x*√3/2+cos2x*1/2)+2
=2(sin2xcosπ/6+cos2xsinπ/6)+2
=2sin(2x+π/6)+2
所以T=2π/2=π
-π/6
f(x)=4cosx(sinxcosπ/6+cosxsinπ/6)+1
=2√3sinxcosx+2cos²x-1+2
=√3sin2x+cos2x+2
=2(sin2x*√3/2+cos2x*1/2)+2
=2(sin2xcosπ/6+cos2xsinπ/6)+2
=2sin(2x+π/6)+2
所以T=2π/2=π
-π/6