最大值为2√10/5.
方法1、设t=2a+b,则有4a^2+(t-2a)^2+a(t-2a)=1,化简为:6*(a-t/4)^2=1-10t^2/16,等式恒成立,则有1-10t^2/16≥0,解得:-2√10/5≤t≤2√10/5.
方法2、设t=2a+b,则有4a^2+(t-2a)^2+a(t-2a)=1,
化简为:6a^2-3at+t^2-1=0
因为a属于R,要使该式有解,【可以看成关于a的一元二次方程,t为一未知数】
则△≥0,
可解得到:-2√10/5≤t≤2√10/5.
最大值为2√10/5.
方法1、设t=2a+b,则有4a^2+(t-2a)^2+a(t-2a)=1,化简为:6*(a-t/4)^2=1-10t^2/16,等式恒成立,则有1-10t^2/16≥0,解得:-2√10/5≤t≤2√10/5.
方法2、设t=2a+b,则有4a^2+(t-2a)^2+a(t-2a)=1,
化简为:6a^2-3at+t^2-1=0
因为a属于R,要使该式有解,【可以看成关于a的一元二次方程,t为一未知数】
则△≥0,
可解得到:-2√10/5≤t≤2√10/5.