COSα=5/13,SIN²α=1-COS²α=144/169
又因为α在四象限,所以SINα=-12/13
SIN(α+π/4)/COS2α=〔SINαCOS(π/4)+COSαSIN(π/4)〕/COS²α-SIN²α
=(√2/2)(SINα+COSα)/(SINα+COSα)(COSα-SINα)
=(√2/2)/(COSα-SINα)
代入COSα=5/13,SINα=-12/13,
原式=√2/2×13/17=13√2/17
COSα=5/13,SIN²α=1-COS²α=144/169
又因为α在四象限,所以SINα=-12/13
SIN(α+π/4)/COS2α=〔SINαCOS(π/4)+COSαSIN(π/4)〕/COS²α-SIN²α
=(√2/2)(SINα+COSα)/(SINα+COSα)(COSα-SINα)
=(√2/2)/(COSα-SINα)
代入COSα=5/13,SINα=-12/13,
原式=√2/2×13/17=13√2/17