△ABC是一个等腰三角形.P点是边BC上一点.由P点分别向AB,AC引垂线PD,PE.判断PD+PE这时为常数吗?
1个回答
第一问是常数,PD+PE=BC边上的高
第二问如果是等腰三角形的话不是常数,等边三角形才是常数,常数为高
相关问题
如图,边长为2的等边三角形△ABC,P为边BC上一个动点,PE⊥AB,PD⊥AC,则PE+PD=______.
P为等边三角形ABC内一点,PD⊥AB于D,PE⊥AC于点E,PE⊥BC于点F,AM⊥BC于点M,求证AM=PD+PE+
△ABC为等边三角形,P是△ABC内任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,求PD+PE+
P是等边△ABC内任意一点,PD‖AB,PE‖BC,PF‖AC,求证:PD+PE+PF为定值
已知点P为等腰△ABC底边BC上一点,PD垂直AB于D,PE垂直AC于E,CF垂直于AF,求证:PE+PD=CF
已知△ABC中AB=AC,点P是底边的中点,PD⊥AB,PE⊥AC,垂足分别是D、E,求证:PD=PE.
如图,△ABC是等边三角形,p是三角形内一点,PD∥AB,PE∥BC,PF∥AC,三角形周长12,PD+PE+PF的值
点P是三角形ABC内任意一点.点P是三角形ABC内任意一点,PD垂直AB,PE垂直BC,PF垂直AC,垂足分别为D,E,
已知:等边三角形ABC.(1)P为△ABC内任一点,自点P向三边作垂线PD、PE、PF,点D、E、F为垂足.求证:PD+
△ABC为等腰三角形,AB=AC=a,P点是底边BC上的一个动点,PD‖AC,PE‖AB.(1)用a表示四边形ADPE的