∠ABC+∠ACB+∠BAC=180°
∠ABC=66° ∠ACB=54°
∠BAC=180°-∠ABC-∠ACB=180°-66-54=60°
BE垂直AC与E,所以△ABE为直角三角形 则 ∠AEB=90°
∠BAE=∠BAC=60°
∠ABE=180°-∠AEB-∠BAE=180°-90°-60°=30°
同理可证∠ACF=30°
∠ABC+∠ACB+∠BAC=180°
∠ABC=66° ∠ACB=54°
∠BAC=180°-∠ABC-∠ACB=180°-66-54=60°
BE垂直AC与E,所以△ABE为直角三角形 则 ∠AEB=90°
∠BAE=∠BAC=60°
∠ABE=180°-∠AEB-∠BAE=180°-90°-60°=30°
同理可证∠ACF=30°