y=cosx+sinx
=√2[(√2/2)cosx+(√2/2)sinx]
=√2[sin(π/4)cosx+cos(π/4)sinx]
=√2sin(π/4+x) =1/3
sin(π/4+x) =√2/6∈(0,√2/2)
则
π/4+x∈(0,π/4) ∪(3π/4,π)
x∈(-π/4,0) ∪(π/2,3π/4)
又x>0,(-π/4,0)舍去
因此
x∈(π/2,3π/4)
y=cosx+sinx
=√2[(√2/2)cosx+(√2/2)sinx]
=√2[sin(π/4)cosx+cos(π/4)sinx]
=√2sin(π/4+x) =1/3
sin(π/4+x) =√2/6∈(0,√2/2)
则
π/4+x∈(0,π/4) ∪(3π/4,π)
x∈(-π/4,0) ∪(π/2,3π/4)
又x>0,(-π/4,0)舍去
因此
x∈(π/2,3π/4)