1.设a=1996
那么原式=a*[(a-2)*1000+a-3]-(a-2)*(a*1000+a)
=(1001a²-2003a)-(1001a²-2002a)
=-a
=-1996
2.设a=2 原式=(-a²)的1002次方*(1/a)的2005次方
=a的2004次方*(1/a)的2005次方
=(1/a)的一次方 即1/2
3.其实几多又几分之几的分式,都可以写成几多加上几分之几
原式=(1+2+3+……11+12)-【(1-1/3)+(1/3-1/5)+(1/5-1/7)+……+(1/21-1/23)+(1/23-1/25)】
=78+24/25
=78又24/25