分式求和问题1/(2^k+1)+1/(2^k+2)+…+1/2^(k+1)
1个回答
第二步中,前半部分分母全部变为2^k+2^(k-1),后半部分分母全部变为2^(k+1),然后分别相加.
分母增大,则结果变小
相关问题
n=1,略设n=k成立,k≥1即1+2+……+2k=k(2k+1)则n=k+11+2+……+2k+(2k+1)+(2k+
递推数列问题,求通项a(2k+2)=a(2k)-1/(2k+1)*a(k)a(2k+1)=a(2k+2)其中k>=1有此
(1/3)k(4k^2-1)+(2k+1)^2为什么=(1/3)(k+1)[4(k+1)^2-1]
(k+1)!(k+1)(k+2)为什么等于(k+1)[(k+2)!
求解2个线性方程 1.k1-k2+3k3=0 3k1+k2+k3=0 -k1+2k2-5k3=0 2.k1-k2+2k3
分式方程1/X-2 + 3 = K-2/2-K 有增根.K=?
2^(2k+1)-2^-(2k-1)+2^-2k,等于()A.2^-2k B.2^-(2k-1)C.2^-(2k+1)D
请问这个数项级数怎么求和?∑1/[k(k+1)] = 1/(1*2)+1/(2*3)+...+1/[n(n+1)]+..
已知数列{an},a1=1,a2k=a(2k-1)+(-1)^k,a(2k+1)=a2k+3k,k=1,2,3,...(
求证:cos(π/2k+1)+cos(2π/2k+1)+…+cos(2k-1)π/2k+1+cos2kπ/2k+1=0