自然数集和有理数集同构吗如果同构,请给出证明,不同构说出理由

4个回答

  • Aut(Q) = {f(x) = q x | q 是非0的有理数}.

    证:不难看出,若f是Q的同态,则

    f(0) = f(0) + f(0),从而f(0) = 0.

    记f(1) = q,则由数学归纳法易见对自然数f(n) = n q.

    f(-n) + f(n) = f(0) = 0,从而

    f(-n) = - f(n) = - nq.

    又归纳知 n f(x) = f(n x),从而

    f(x) = f(n x) / n.(x是任意有理数)

    即对有理数m / n,有

    f(m / n) = f(m) / n.

    于是

    f((m/n) * y) = (m/n) * f(y),

    对上式记x = m / n,并取定y = 1,则

    f(x) = x f(1) = x q.

    由f是单同态,则Ker f = {0},从而q不为0.

    容易验证当q为有理数时,f 还是满同态,从而是同构.

    综上,Q的自同构就只有f(x) = q x(q不等于0).