这个简单吧,F’(x)=[xf'(x)-f(x)]/x^2,设g(x)=[xf'(x)-f(x)]'=xf''(x).由于f(x)在[0,A]上的导数存在且为增函数,说明f(x)在[0,A]上的二阶导数大于0,于是g(x)大于0,F(x)=f(x)/x是增函数
设f(x)在闭区间[0,A]上连续,且f(0)=0.如果f'(x)存在且为增函数(0
2个回答
相关问题
-
设函数f(x)在闭区间【0,1】上连续,开区间可导,且f(0)=f(1)=0,f(1/2)=1,
-
设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+
-
设函数f(x)在闭区间[0,1]上连续,且f(0)=1,f(1)=0,求证:存在一点ξ属于(0.1),使得f(ξ)=ξ
-
设函数f(x)在闭区间[0,1]上连续,又设f(x)只取有理数,且f(1/2)=2,试证在闭区间[0,1]上,f(x)恒
-
设f(x)在区间[0,+∞)上连续,且当x>0时,0
-
设f(x)在闭区间[a,b] 上连续,在开区间[a,b] 内可导,且f(a)=0 ,证明存在ξ∈(a,b) ,使得 f'
-
设f(x)在【0,a】上连续,在(0,a)内可导,且f(0)=f(a),求证:存在 ζ∈(0
-
设函数f(x)在闭区间[a,b]上连续,且f(x)>0,则方程∫xaf(t)dt+∫xb1f(t)dt=0在开区间(a,
-
设f(x)在x=0处连续且lim(x趋于0)[f(x)+f(-x)]/x存在,证明f(0)=0
-
函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明;在[0,a]上至少存在一点使得f(x)=f(x+a)