∵∠A+∠ABC+∠ACB=180°
∴∠ABC+∠ACB=180°-∠A
∵BP平分∠ABC,PC平分∠ACB,∠1+∠2+∠3+∠4=180°-∠A
∴∠2+∠4=1/2(180°-∠A)
∠A=112°时∠bpc=180°-(∠2+∠4)=90+1/2∠A=146°
A=α时,∠bpc=180°-(∠2+∠4)=90°+1/2α
∵∠A+∠ABC+∠ACB=180°
∴∠ABC+∠ACB=180°-∠A
∵BP平分∠ABC,PC平分∠ACB,∠1+∠2+∠3+∠4=180°-∠A
∴∠2+∠4=1/2(180°-∠A)
∠A=112°时∠bpc=180°-(∠2+∠4)=90+1/2∠A=146°
A=α时,∠bpc=180°-(∠2+∠4)=90°+1/2α