已知向量a,b,满足|a|=1,|b|=1,|ka+b|=根号3|a-kb|.k>0

2个回答

  • (1)设a=(x1,y1),b=(x2,y2)

    ka+b=(kx1+x2,ky1+y2)

    a-kb=(x1-kx2,y1-ky2)

    F(k)=a*b=(x1x2,y1y2)

    |a|=√(x1^2+y1^2)=1=>x1^2+y1^2=1

    |b|=√(x2^2+y2^2)=1=>x2^2+y2^2=1

    |ka+b|=√[(kx1+x2)^2+(ky1+y2)^2]

    |a-kb|=√[(x1-kx2)^2+(y1-ky2)^2]

    |ka+b|=根号3*|a-kb|

    =>(kx1+x2)^2+(ky1+y2)^2=3[(x1-kx2)^2+(y1-ky2)^2]

    =>(k^2-3)(x1^2+y1^2)+(1-3k^2)(x2^2+y2^2)+8k(x1x2+y1y2)=0

    =>x1x2+y1y2=(1+k^2)/(4k)

    =>F(k)=(1+k^2)/(4k)

    (2)F(k)=(1+k^2)/(4k)=(1-k)^2/(4k)+1/2

    当k=1,F(k)有最小值1/2.因此

    x^2-2tx-1/2≤1/2

    x^2-2tx-1≤0

    t-√(t^2+1)≤x≤t+√(t^2+1)

    ∵t∈[-1,1]

    ∴-1-√2≤x≤1+√2 记住给我多点钱啊 祝你学习快乐