用数学归纳法证明34n+1+52n+1(n∈N)能被8整除时,当n=k+1时34(k+1)+1+52(k+1)+1可变形

4个回答

  • 解题思路:根据指数运算法则化简34(k+1)+1+52(k+1)+1为34k+1+52k+1(k∈N)的倍数与8的倍数和的形式即可得到选项.

    当n=k+1时34(k+1)+1+52(k+1)+1=34×34k+1+25×52k+1=56×34k+1+25(34k+1+52k+1)两个表达式都能被8整除,

    故选A.

    点评:

    本题考点: 数学归纳法.

    考点点评: 数学归纳法证明n=k+1时,必须化为n=k的形式,才能正确应用假设,这是数学归纳法的特殊要求,是基础题.