(x+y+z)^2
=x^2+y^2+z^2+2xy+2yz+2xz>3(xy+yz+zx)
所以只要求证
x^2+y^2+z^2>xy+yz+zx
2(x^2+y^2+z^2) >2(xy+yz+zx)
(x^2+y^2)+(x^2+z^2)+(y^2+z^2)>=2xy+2xz+2yz
所以x^2+y^2+z^2>=xy+yz+zx
这个题要给出条件是:x,y,z>0 且x,y,z不相互相等
(x+y+z)^2
=x^2+y^2+z^2+2xy+2yz+2xz>3(xy+yz+zx)
所以只要求证
x^2+y^2+z^2>xy+yz+zx
2(x^2+y^2+z^2) >2(xy+yz+zx)
(x^2+y^2)+(x^2+z^2)+(y^2+z^2)>=2xy+2xz+2yz
所以x^2+y^2+z^2>=xy+yz+zx
这个题要给出条件是:x,y,z>0 且x,y,z不相互相等