已知等差数列{a n }的公差是d,S n 是该数列的前n项和、

1个回答

  • (1)设等差数列{a n}的首项是a 1

    ∴S n=na 1+

    n(n-1)

    2 d,S m=ma 1+

    m(m-1)

    2 d,

    ∴S m+n=(m+n)a 1+

    (m+n)(m+n-1)

    2 d

    =(m+n)a 1+

    m 2 + n 2 +2nm-m-n

    2 d

    =ma 1+

    m(m-1)

    2 d+na 1+

    n(n-1)

    2 d+mnd

    =S m+S n+mnd;

    (2)由条件,可得S m=ma 1+

    m(m-1)

    2 d①,S n=na 1+

    n(n-1)

    2 d②,

    ②×n-①×m得:

    (m-n)sn=

    1

    2 nm(m-1)d -

    1

    2 mn(n-1)d,

    整理得mnd=-2s n,,

    则S m+n=S m+S n+mnd=2s n-2s n=0.

    (3)类比得到等比数列的结论是:若各项均为正数的等比数列{b n}的公比为q,前n项和为S n,则对任意正整数m、n,都有s m+n=s m+q ms n

    证明如下:不妨设m≤n,则s m+n=(b 1+b 2+…+b m)+(b m+1+b m+2+…+b n+m

    =s m+(b 1q m+b 2q m+…+b nq m

    =s m+q m(b 1+b 2+…+b n

    =s m+q ms n

    ∴s m+n=s m+q ms n

    问题解答如下:由s 20=s 10+10=s 10+q 10s 10,得q 10=

    s 20 - s 10

    s 10 =

    15-5

    5 =2,

    则s 30=s 10+20=s 10+q 10s 20=5+2×15=35,

    ∴s 50=s 20+30=s 20+q 20s 30=15+2 2×35=155.