(1)设等差数列{a n}的首项是a 1,
∴S n=na 1+
n(n-1)
2 d,S m=ma 1+
m(m-1)
2 d,
∴S m+n=(m+n)a 1+
(m+n)(m+n-1)
2 d
=(m+n)a 1+
m 2 + n 2 +2nm-m-n
2 d
=ma 1+
m(m-1)
2 d+na 1+
n(n-1)
2 d+mnd
=S m+S n+mnd;
(2)由条件,可得S m=ma 1+
m(m-1)
2 d①,S n=na 1+
n(n-1)
2 d②,
②×n-①×m得:
(m-n)sn=
1
2 nm(m-1)d -
1
2 mn(n-1)d,
整理得mnd=-2s n,,
则S m+n=S m+S n+mnd=2s n-2s n=0.
(3)类比得到等比数列的结论是:若各项均为正数的等比数列{b n}的公比为q,前n项和为S n,则对任意正整数m、n,都有s m+n=s m+q ms n.
证明如下:不妨设m≤n,则s m+n=(b 1+b 2+…+b m)+(b m+1+b m+2+…+b n+m)
=s m+(b 1q m+b 2q m+…+b nq m)
=s m+q m(b 1+b 2+…+b n)
=s m+q ms n,
∴s m+n=s m+q ms n.
问题解答如下:由s 20=s 10+10=s 10+q 10s 10,得q 10=
s 20 - s 10
s 10 =
15-5
5 =2,
则s 30=s 10+20=s 10+q 10s 20=5+2×15=35,
∴s 50=s 20+30=s 20+q 20s 30=15+2 2×35=155.