7.已知三角形ABC的三边a>b>c且a+c=2b,A—C=90°,求a:b:c

2个回答

  • 1.a+c=2b

    =>sinA+sinC=2sinB

    =>2sin(A+C)/2cos(A-C)/2=4sin(A+C)/2cos(A+C)/2

    又因0cos(π-B)/2=√2/4

    sinB/2=√2/4

    cosB/2=√[1-sin²(B/2)]=√14/4

    sinB=2(√2/4)(√14/4)=√7/4

    sinA*sinC=[cos(A-C)-cos(A+C)]/2

    =[2cos²(A-C)/2-1-2cos²(A+C)/2+1]/2

    =cos²(A-C)/2-cos²(A+C)/2=(√2/2)²-(√2/4)²=3/8

    则sinA,sinC是x²-√7x/2+3/8=0的解(又sinA>sinC)

    sinA=[√7/2+√(7/4-3/2)]/2,sinC=[√7/2-√(7/4-3/2)]/2

    =>sinA=(√7+1)/4,sinC=(√7-1)/4

    sinA:sinB:sinC=(√7+1):√7:(√7-1)

    2.(a+b+c)(a—b+c)=3ac

    =>(a+c)²-b²=3ac

    =>a²+c²-b²=ac

    cosB=(a²+c²-b²)/2ac=1/2

    B=π/3

    tanA+tanC=3+√3

    =>(sinAcosC+sinCcosA)/cosAcosC=3+√3

    =>sin(A+C)/cosAcosC=3+√3(A+C=π-B=2π/3)

    =>cosAcosC=√3/2/(3+√3)=(√3-1)/4

    又2cosAcosC=cos(A+B)+cos(A-C)=-1/2+cos(A-C)

    则cos(A-C)=(√3-1)/2+1/2=√3/2

    因-π