解题思路:写出“两角和与差的正余弦公式”的形式,写出类比结论.
解S(x)=
ex-e-x
2,C(x)=
ex+e-x
2,
∵“两角和与差的正余弦公式”的形式是
sin(x+y)=sinxcosy+cosxsiny
sin(x-y)=sinxcosy-cosxsiny
cos(x+y)=cosxcosy-sinxsiny
cos(x-y)=cosxcosy+sinxsiny
对于S(x)=
ex-e-x
2,C(x)=
ex+e-x
2,
对于①S(x+y)=S(x)C(y)+C(x)S(y)
②S(x-y)=S(x)C(y)-C(x)S(y)
③2S(x+y)=S(x)C(y)+C(x)S(y)
④2S(x-y)=S(x)C(y)-C(x)S(y)
于是类比可以得到答案,
对于S(x+y)=
ex+y-e-x-y
2,
S(x)C(y)+C(x)S(y)=
ex-e-x
2•
ey+e-y
2+
ey-e-y
2•
ex+e-x
2=[1/2](ex+y-e-x-y)
故①正确,③错误,
同理可到②正确,④错误,
故①②正确.
故选:A
点评:
本题考点: 导数的运算.
考点点评: 本题考查利用类比推理从形式上写出类比结论.写类比结论时:先找类比对象,再找类比元素.