f(x) = 2^x / (1 + 2^x) - 0.5
= 0.5 - 1/(1 + 2^x)
2^x > 0
0 < 1/(1 + 2^x) < 1
-0.5 < f(x) < 0.5
同理
-0.5 < f(-x) < 0.5
当 f(x) < 0
0.5 - 1/(1 + 2^x) < 0
=> x < 0
=> 0.5 - 1/(1 + 2^(-x)) > 0
f(-x) > 0
=> [f(x)] + [f(-x)] = -1 + 0 = -1
当 f(x) ≥ 0
0.5 - 1/(1 + 2^x) ≥ 0
=> x ≥ 0
=> 0.5 - 1/(1 + 2^(-x)) ≤ 0
f(-x) ≤ 0
=> [f(x)] + [f(-x)] = 0 - 1 = -1
所以 y = [f(x)] + [f(-x)] ∈ {-1}