椭圆与直线的交点(x1,y1),(x2,y2)
a^2+b^2=2500
x1+x2=1
得:(a^2+9b^2)x^2-12b^2x+4b^2-(ab)^2=0
x1+x2= 12b^2/(a^2+9b^2)=1
得a^2=7500/4 b^2=2500/4
故椭圆方程是:
4y^2/7500+4x^2/2500=1
椭圆与直线的交点(x1,y1),(x2,y2)
a^2+b^2=2500
x1+x2=1
得:(a^2+9b^2)x^2-12b^2x+4b^2-(ab)^2=0
x1+x2= 12b^2/(a^2+9b^2)=1
得a^2=7500/4 b^2=2500/4
故椭圆方程是:
4y^2/7500+4x^2/2500=1